Biblio

Found 314 results
Author Keyword Type [ Year(Desc)]
Filters: Filter is   [Clear All Filters]
2025
Rosenzweig M, Kozul M, Sandberg R, Giannini G, Pacciani R, Marconcini M, Arnone A, Spano E, Bertini F.  2025.  Numerical Design of Experiments for Repeating Low-Pressure Turbine Stages Part 2: Effect of Reynolds Number on Different Blade Geometries. ASME Turbo Expo 2025 Turbomachinery Technical Conference and Exposition. 11: Turbomachinery:V011T32A024.
GT2025-153512. Recommended for publication on ASME J. Turbomach.
Rosenzweig M, Kozul M, Sandberg R, Giannini G, Pacciani R, Marconcini M, Arnone A.  2025.  Numerical Design of Experiments for Repeating Low-Pressure Turbine Stages Part 1: Computational Opportunities and Methodology. ASME Turbo Expo 2025 Turbomachinery Technical Conference and Exposition. 11: Turbomachinery:V011T32A014.
GT2025-152583. Recommended for publication on ASME J. Turbomach.
Pacciani R, Fang Y, Metti L, Marconcini M, Sandberg R.  2025.  A Reformulation of the Laminar Kinetic Energy Model to Enable Multi-Mode Transition Predictions.. Flow, Turbulence and Combustion. 114(1):81-116.
Pinelli L, Malcaus M, Giannini G, Marconcini M.  2025.  Some Experiences About the RANS Modeling of UHBR Fan: The Case of ECL5/CATANA. Int. J. Turbomach. Propuls. Power.. 10:17.
Pinelli L, Malcaus M, Giannini G, Marconcini M.  2025.  Some Experiences About the RANS Modeling of UHBR Fan: The Case of ECL5/CATANA. 16th European Turbomachinery Conference ETC16.
Bandini A, Bettini C, Peruzzi L, Caretta M, Canelli C, Marconcini M, Pinelli L, Arnone A.  2025.  Targeting Full-Hydrogen Operation on Industrial-Scale Gas Turbines: Impact of Unconventional Fuels on Turbine Module Performance and Aeromechanics. ASME J Turbomach. 147(7):071008.
Pela A, Marconcini M, Agnolucci A, Belardini E, Grimaldi A, Toni L, Valente R, Arnone A.  2025.  Towards the Automatic Generation of Transonic Centrifugal Impellers by Deep Learning and Feature Importance Techniques. ASME Turbo Expo 2025 Turbomachinery Technical Conference and Exposition. 12: Turbomachinery:V012T35A011.
GT2025-153947
Bottarelli T, Fanfani M, Nesi P, Pinelli L.  2025.  Using Physics-Informed Neural Networks for Solving Navier-Stokes Equations in Complex Scenarios. Engineering Applications of Artificial Intelligence. 148:110347.
Submitted
Gu Y, Fang Y, Akolekar HD, Pacciani R, Marconcini M, Ooi ASH, Sandberg R.  Submitted.  Machine-Learning Strategies for Transition/Turbulence Modelling for Low-Pressure Turbines With Unsteady Inflow Conditions. 17th International Symposium on Unsteady Aerodynamics Aeroacoustics and Aeroelasticity of Turbomachines ISUAAAT17.

Pages